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C O N J U G A T E  F L O W S  A N D  S M O O T H  B O R E S  IN A W E A K L Y  S T R A T I F I E D  F L U I D  

N. I. Makarenko UDC 532.592 

The problem of steady-state flows in a layer of a continuously stratified fluid is considered. The 
sufficient condition of existence of families of shear flows that are consistent with the meaning 
of the laws of conservation of mass, momentum, and energy with a uniform flow is given. 
Approximate solutions of the smooth-bore type, which describe the wave transitions for pairs of 
conjugate flows of the first spectral mode, are obtained. 

Smooth internal bores are the stationary wave configurations in the layer of a fluid in the form of 
continuous transitions between two different horizontal flows on the left and on the right at infinity. The smooth 
bore in a two-layer fluid "under a lid" is described by the model of the second-approximation shallow-wave 
theory (Ovsyannikov's model [1]); the weakly nonlinear KdV-asymptotic solution was obtained by Funakoshi 
[2], and the existence of the corresponding exact solutions of the Euler equations was shown in [3-5]. In 
the case of continuous stratification, bore-type approximate solutions were obtained in [6, 7]. In laboratory 
experiments, the bore was observed for the case of a two-layer [8] and continuous [9] density distribution. In 
the present work, the sufficient condition of existence of families of shear flows conjugate to a uniform flow is 
given for a stratification close to a linear or exponential stratification. The bore s tructure is investigated for 
flows which correspond to the first spectral mode of velocities. 

1. In i t ia l  E q u a t i o n s .  We consider the steady-state motion of an inviscid incompressible fluid in 
the layer "under a lid" - c o  < x < +co,  0 < y < h, the scheme of which is shown in Fig. 1. The flow 
pattern is completely determined'by the stream function r of the velocity fields u = (r - r  owing to the 
incompressibility condition, the density p is constant along each of the streamlines r  y) = const, so that 
p = p(~b), and the fluid pressure is determined using the known p and r from the Bernoulli integral. In this 
situation, the system of Euler equations is reduced to the Dubreil-Jacotin-Long equation for r [10] 

p(~)A~b + p'(~b)(gy+ 11Vr ) = B'(~b) 

with the no-flow conditions at the bot tom y = 0 and on the lid y = h and the condition r ---, r  as 
x --* +c~, where r  ~ r  It is assumed that ,  as x ~ -oo ,  the flow tends to a uniform flow with u = (c, 0) 
and a specified density distribution poo(y). In the absence of closed streamlines, we obtain the following form 
of the function p(~b) and of the Bernoulli function B(r 

p ( r  = pod(C/c ) ,  B ' ( r  = d ( r  - -  + c2 

Let No be the characteristic magnitude of the Brunt-Vs163 frequency N, g2 (y )  -- -gp~(y)/(poo(y)). 
The basic dimensionless constants in the problem are the Boussinesq parameter a and the reduced Froude 
number A: 
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o ' - -  
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Fig. 1 

We introduce the dimensionless variables by using the quantities h/Trv,~ , h/Tr, ch/Tr, and p~(O) as the scales 
for z, y, ~b, and p, respectively. We consider the states which have, for x = -00 ,  the following density 
distr ibution in depth: 

p(y,~r) = 1 -- ~ry -- o'2pl(y,a). (1.1) 

Here pl(O, a) = 0 according to the choice of the scale for p. As particular cases, this dependence includes the 
linear law and the exponential stratification p = exp ( - a y ) ,  thus perturbing t hem by quantities of the order 
O(a 2) in the weak-stratification limit ~r --~ 0. In what  follows, it is assumed tha t  the function p is defined for 
c~ E [0, a0] with a certain a0 > 0 and has the following properties. 

C o n d i t i o n  1. For k ) 4, the function Pl e Ck([0, Tr] x [0, a0]) is such that  p > 0 and py < 0 when 
(y, o )  e [0, • (0, 

The  problem of bore-type flows is posed as follows. For a specified value of a,  it is required to determine 
the real positive parameter ~ and the function v(x ,  y) = r y ) - y ,  which should satisfy the following equations 
in the band Q = R x (0, 7r) and at its boundary:  

( ) f ( v ,  Dv, D2v, y;a,)~) -~div~(pV~,v) - p' a -1)w + ~lV~vl 2 = 0, (x ,y )  E ft; (1.2) 

v = 0 (y = 0, y = (1.3) 

v --~ v i ,  Vv --~ Vv ~: (x --~ 4-00). (1.4) 

Here diva = V~., Va = ( v ' ~ D , , D y ) ,  p = p(y + v ,a ) ,  and p' = py(y + v ,a ) .  The expression v - ( y )  =_ 0 
corresponds to a uniform flow in (1.4), and the nonzero solution v+(y) of Eqs. (1.2) with homogeneous 
conditions for y = 0 and y = 7r corresponds to a flow conjugate to a uniform flow. According to formula (1.1) 
and condition 1, the function F from (1.2) admits  a representation in the form 

( 1 2 )  F = vy~ + 1v + a vx~ + .kp~o(y + v)v - (y + v ) v ~  - v~ - -~ v + cr2F1 

with a smooth function F1 of the class C k-1 and the coefficient po(y) = pl(y ,O),  which characterizes the 
fine stratification structure in the background of the basic density distribution. Since the density p(y, a) is 
determined only for y E [0, rr], the values of the dimensionalized stream function ~b should lie in the same gap: 

0 y + E a .  (1.5) 

In addition, the data at infinity should satisfy the matching conditions following from the conservation laws. 
The established form of the dependences of p and B on r automatically leads to the coincidence of the mass 
and energy fluxes for any pair of solutions of Eqs. (1.2) and (1.3) depending only on y. The situation with the 
law of conservation of momen tum is different. The  corresponding matching condition is naturally obtained 
by means of the variational principle [11], according to which (1.2) is the Euler-Lagrange equation for the 
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functional with action density 

y+v 
1 

L =  - plv vl + J - + v, 
Y 

Owing to the invariance of this Lagrangian under the transition group relative to x, according to the Noether 
theorem, the differential operator F in (1.2) admits a transformation to the following divergent form: 

v~F(v;a,A) = D~ ( L -  v~L,,~:) + D~(-v~L,,~) 

(hereafter, the arguments Dr, D2v, and y of the function F are omitted for brevity). With allowance for the 
conditions at the bottom and the lid, the integration of this equality over y shows that, for any x, the relation 

T 

l(v; a,A) = f(L +apvZz)dy = const (1.6) 
0 

should hold�9 For solutions with asymptotic behavior (1.4), as x ~ - c~ ,  the constant in (1.6) is zero, and we 
have a restriction for the data  for x = +c~: all the states v + conjugate to the uniform flow v -  are the critical 
points of the functional l [considered for the functions v = v(y)], but only the states that lie at the same level 
surface 1 = 0 as the ground state are admissible. 

2. C o n j u g a t e  Flows.  As a bifurcation problem, the problem of conjugate stratified flows was 
formulated by Benjamin [12], but the problem of compatibility of the three physical conservation laws has 
not yet been investigated. We consider the nonlinear eigenvalue problem for v = v+(y) 

(pv~)y-p'(a-aAv+lv2~ =0, v(O)=v(~r)=O (2.1) 
2 ] 

with additional matching condition (1.6). For o" = 0, the unperturbed operator F(v; 0, A) = v~y + Av generates 
a countable family of modes of the eigenfunctions and eigenvalues v + = bsinny and X,~ = n 2 (b E R, 
n = 1, 2, 3, . . . ) .  The perturbed solution v+(y) = bsin ny + bw(y) is found in the class of functions C0k[0, r] = 
{v E Ck: v(0) = v(r)  = 0} (k from Condition 1) for Froude numbers A close to one of the eigenvalues An. Let 

Qn be the orthogonal projector onto the addition to sin ny in L2[0, r] and #(v; a, A) = / F(v(y); a, A) sin dy 
0 

be the defect functional which specifies the branching Lyapunov-Schmidt equation for problem (2.1). The 
function w E QnCko[O, r] and the real parameters b, a, and A should satisfy the system 

wy~ + n2w = Q,,f+(w; b, a,)~); (2.2) 

l(v+; or, A) = 0, #(v+; a, A) = 0, (2.3) 

where, for b # 0, the right-hand part f +  has the form 

bf+(w; b, a, A) = F(v+; 0, n 2) - F(v+; a, A) 

and is predetermined with respect to the continuity at the point b = 0. We note that, for v = v(y), the 
Lagrangian L(v; a, A) has the structure 

y+v 

Y 

with a regular residual L1 as cr --+ 0. One can easily see that,  for a = 0 and A = An, both equations in (2.3) 
are valid with w = 0 and for an arbitrary real b. The restriction on the amplitude parameter b follows from 
condition (1.5); here we require the fulfillment of the more strict condition 

(= cos ny + w'(y))b > -1 ,  

according to which there is no return flow of fluid in the conjugate flow. For w from the sphere B~ = {w E 
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Q,ck[o,  ~r]: Hwl[ck < 5}, this restriction is obviously satisfied provided [b[ < 1/(n + 5). With this in mind,  in 
the space of the parameters we separate the domain 

IIn(5) = {(b, a, A): I b l < l / ( n + 5 ) ,  a > 0 ,  ~ r + I A - A , ] < 5 } .  

L e m m a  1. There is ~ > O, such that, for (b,a, A) e IIn(5), Eq. (2.2) has a unique solution w in the 
sphere B6. The mapping (b, a, A) ~ w is smooth and, for ((r, A) close to (0, n2), has the asymptotic behavior 

lr 

w(y; b, ~, A) = - a b  -1 f 9,~(y, z )Q. fa(bs in  nz; O, n 2) dz + O(a 2 + a l a  - n : l ) ,  
o 

5. (y , z )  = --1 ( z -  . )  
~ r n  

s i n n y c o s n z + - i  ~ s i n n ( y - z )  ( O < z < y ) ,  

n ( 0 (y < z  <~-), 

where 

and the estimate of the residual is uniform relative to b. 
To prove Lemma 1, Eq. (2.2) is reduced to a nonlinear integrodifferential equation with the Green 

function 9n- The existence and uniqueness of the solution for quite small 5 and the uniform property of the 
asymptot ic  solution follow from the estimate 

[[f+(wa; b,a, A) - f+(w2; b,a, A)HCk_2 ~ C(a  + [A - A,l)llwl - w2llck, 

in which the constant C depends only on 5 and the Ck-norm of the function p. 
Now we consider system (2.3), in which v + is determined through the function w described in Lemma 

1. Let 1 + and #+ denote the superposition of the functionals l and # with the above mapping v +. For the 
parameters  b and a = (a, A - An), the system has the form 

with the Jacobi matrix 

A,~(b)a = X ( a ;  b) (2.4) 

0(l+,.+) 
A~ - O( cr , A ) ~=o,~=~,, 

and the smooth vector function X :  II~(3) ~ ]R 2, which admits the estimate IX(a;  b) I <~ C[al 2 uniform 
relative to b. Since (w, sin ny)L2[0,,r ] = 0, the element w, which has the same order of smallness as ~ according 
to Lamina 1, does not contribute to the linear part of Eq. (2.4). In view of this and owing to the potential 
character of the operator F (which is the gradient of the functional l), it follows that  A~ has the s tructure of 
the Wronskian 

An(b)= ( sn(b) ran(b) ) 
s '(b) m'(b)  

with coefficients ran(b) = 7rb2/4 and 

w y+b sin n y  

sn(b) = n 2 (Po(Y + bsinny) - po(r + (Trnb) 2 + -~ (1 - ( -1)" )b  3. 
o y 

We denote the Wronskian of the functions sn and mn by A,~(b) = det An(b): 

An(b) = -~- ~rb 4 (2.5) 

This function plays a determining role in the subsequent considerations. If b0 is such that  An(b0) r 0 in a 
sufficiently small half-neighborhood of the point (bo, 0, n 2) E OH,(6), system (2.4) has no solutions (b, a, 3,) E 
IIn(5) with a ~r 0; therefore, nontrivial solutions can be found only for values of b near the zeros of the 
function A~. The sufficient condition of the existence of solutions is given by the following statement.  
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T h e o r e m  1. Let bo e ( - l l ( n + 6 ) ,  l l (n+6) )  be the root of the function An(b), for which the conditions 

(i) A~(b0)#0 if bo # O, 

(ii) A(4 ) (b0 )#0  i f  bo=O 

are satisfied. Then, for given bo, there is a unique ~r-continuous branch of conjugate states for which 
(v+(y; a), A+(a)) ~ (b0 sin ny, n 2) in Cko • as a ~ +0. The dependence on a is smooth, and the eigenvalues 
have the asymptotic behavior 

A+(o) = n2 sn(bo) ~ )  + 0(o'2). (2.6) 

Proof .  For b0 # 0, the matrix An(bo) has a one-dimensional null space and a null cospace generated 
by the vectors e = (mn(bo),-sn(bo)) and e.  = (m' (b0) , -mn(b0)) .  Hence, system (2.4) is equivalent to one 
branching equation for b and r = le l-2a �9 e, which takes the form t~(b - bo) + t2r + F(b,r)  = 0 after the 
trivial solution r = 0 branches. Here h = A'(bo)e �9 e, ,  the form of the coefficient t2 is not important, and 
F(b, r)  = O(r 2 + ( b -  b0)2). It follows from the expressions for e and e.  that tl = mn(bo)A~(bo); consequently, 
in the case of a simple nonzero root of the function An there is a unique nontrivial branch of solutions b(r). 
Since a = "re + O(r  2) and the first component e is different from zero, one can use a as the free parameter 
instead of r, which simultaneously yields the asymptotic solution (2.6). 

Now we consider the root b0 = 0 of the Wronskian An, which is at least four-multiple; since sn(b) = 
O(b 2) as b --* 0, the matrix An(0) is zero. The ambiguity is easily eliminated if one passes from (2.4) to an 
equivalent system of the same form with the matrix 

( b-2sn(b) b-2mn(b) ) 

Bn(b) = b_~s,(b) b_lm,(b)  

instead of An. The smooth vector function X ,  which appears after this transformation on the right-hand 
side, still has, by virtue of Lemma 1, the uniform asymptotic estimate relative to b as lal ---* 0. Because 
det Bn(O) = 0 and rang Bn(O) = 1, with allowance for the above remarks the further analysis is similar to that 
in condition (i). Condition (ii) is'equivalent to the inequality tl # 0 in the branching equation, and formula 
(2.6) holds in this case as well if ones passes to the limit b0 ~ 0 in the coefficient at a. Theorem 1 is proved. 

R e m a r k .  If the multiplicity of the root b0 is such that condition (i) or (ii) is violated, the number of 
branches of conjugate flows born in each of the eigenvalues, and, as a ~ 0, their asymptotic behavior can be 
determined by means of the Newton diagram with the use of the nonzero coefficients at higher degrees r and 
b -  b0 in the branching equation. 

3. S p e c t r u m  of  t h e  L i n e a r  P r o b l e m .  We clarify the mutual arrangement of the branches of 
conjugate states in the plane (a, A) and of the spectrum of the linear problem of small perturbations of 
the ground state for x = - ~ .  Equation (1.2), linearized on the trivial solution has the form 

d i v ~ ( p V a v ) -  Aa-ap'v = f ,  (3.1) 

where p = p(y, a) is the defined function from (1.1) and p' = py. The homogeneous equation has solutions of 
the plane-wave type 

vn(x, y; cr, z~) = e i ~  r a, ~e), ze E R, n e N, (3.2) 

where ~on are eigenfunctions of the Sturm-Liouville problem 

(P~y)u - (a~e2p + Acr-'P')~2 = O, ~(0) = ~(Tr) = O. (3.3) 

If Condition 1 is satisfied, all its eigenvalues An are real and positive. It is known [10] that  An(a, ze) 
monotonically increase with ae2; note that An --+ + ~  as ze 2 -~ + ~ .  It is clear that solutions of the form (3.2) 
are possible only for (a, A) belonging to the set 

= A)I e 
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Fig. 2 

where )~1 i8 the smallest eigenvalue. If A < Al(cr, 0), Eq. (3.1) with f E L2(~) is unambiguously resolved 
in the space W2,0(fl) = {v E W~(fl)[v(x,O) = v(x,~r) -- 0}. This can be established by applying the Fourier 
transform with respect to x to (3.1) and using the expansion ~)(~, y) into the eigenfunctions r a, ~), which 
form the orthogonal basis in L2[0, r] with respect to the scalar product with weight -o'-Ipy(y, a) and the 

o l  
basis in W2 [0, r] orthogonal in the scalar product  

= j p(y, + dy. 
0 

According to Sturm's comparison theorem, the eigenvalues admit  the estimate from below 

+ 

with quanti t ies r = min p(y,~r) and R = max ( - a - l p ~ ( y , a ) ) ;  therefore, for v, the estimate IIvl]w~ <~ 

C(a, A)[[f[[L2, which holds for the points (a, A) outside E, holds. It follows from the aforesaid that, for each 
fixed 6t E (0, ~r0], the symmetric operator in (3.1) with the domain of definition W~0(fl ) has a continuous 
spectrum filling the real semi-axis Re A/> A1 (~r, 0) in the plane of complex A. The set E unites these spectra 
in the plane of real pairs (a, A) relative to the parameter  a; it is arranged in such a way that during each 
transition through the smooth curve An : A = An(a, 0) toward the increase in A, the available generalized 
eigenfunctions vm(x,y; a,:kJee[) (m = 1 ,2 , . . .  ,n  - 1) of the form (3.2) are added by a pair of functions of 
the mode with number n. The pat tern of spectrum arrangement  is well Illustrated by the case of exponential 
stratification p = exp (-ay), for which ~,,(y; cr, he) = 2 f i ~ e  ay/2 sin ny and A,(a, he) = n 2 + a,~ 2 + ~r2/4, so 

that each of the curves An is the parabola A = n 2 § o'2/4. 
In the  long-wave limit (a~ --* 0), the Sturm-Liouvil le  problem (3.3) coincides with the equations of 

conjugate flows (2.1) linearized on the zero solution. As a consequence, the curve An emerges from the point 
(0, n 2) on the  A axis at which a fan of branches of the n th  mode of conjugate flows grows according to 
Theorem 1. Calculating the perturbations of the eigenvalue An(a, 0) with respect to the small parameter a, 
for the slope of the curve A,, at the bifurcation point we have the expression 

7rn2 
D.A. (0 ,0 )  = - 2n--~2 p~o(y)sinnydy---  

o 

which coincides with the quantity " " -s,,(O)/mn(O ). A comparison with the asymptot ic  solution (2.6) shows that 
at the bifurcation point, the curve An touches the branch of conjugate states which corresponds to the root 
b0 = 0 of the  Wronskian An(b). The curves (a, A+(a)) generated by the nonzero roots b0 branch outside the 
set E,, = {(cr, A): A >/ An(or, 0)} if the inequality 

> (3.4) 
m (O) 

holds, and inside E. if the opposite strict inequality holds (the spectrum and the branches of conjugate flows 
are shown in  Fig. 2). 

254 



4. T h e  B o r e  S t r u c t u r e .  We consider in more detail the first mode of conjugate states: only for it can 
the branches of conjugate flows located outside the spectrum E of the linearized problem exist. We fix one of 
the simple nonzero roots of the Wronskian A1; according to Theorem 1, the branch of shear flows [a, A+(a)] 
corresponds to it. In Eq. (1.2), we set A = A+(a) and take the function v+(y; a) as a limiting function in (1.4). 
Below, we construct an approximate solution of problem (1.2)-(1.4) with the specified behavior at infinity. It 
is easy to establish the form of the principal term of the asymptotic behavior of the desired solution v(x, y; a) 
as e ~ 0 assuming that  v is smooth with respect to a up to the value of a = 0. The functions vo = v(x, y; O) 
and vl = D~,v(x, y; 0) should satisfy the equations 

2 ~ ) ,  Dyvj + vj = f j (x E R, 0 < y < ~ r ) ,  vj = O (y = O, y =  

where f0 = 0, f l  = -Fa(v0;  0, 1 ) -  DCA+(0) FA(v0; 0, 1). In the zero approximation, we have v0 = ao(z)sin y, 
where the function a0 is determined from the resolvability condition of the inhomogeneous problem for vl: 
the right-hand part of f l  for each z E R should be orthogonal to sin y in L2([0, ~']). It gives the equation 

II a0 + p'(a0) = 0 (4.1) 

with function p; by virtue of formula (2.6) for A +, the potentiality property of the operator F, and the 
determination of the coefficients sl and ml ,  this function has the form 

( sl(b0) rnl(b)). 
p(b) = s (b) ml@0) 

According to (2.5), this function is expressed through the Wronskian Al(b) as follows: 

bo 
8 

p(b) = b 2 i t-4al( ) dr. (4.2) 
b 

Equation (4.1) can have limited solutions which damp as x --* - o o  only for sign-definite functions p and, 
therefore, we make the following assumption. 

G o n d i t i o n  2. The simple root b0 of the functions As is such that the inequality 

m (b0) mi(b) 
holds everywhere in the interval between b = 0 (including this point) and b = b0. This requirement imposes 
restrictions only on the coefficient p0 = pl(y ,0)  in formula (1.1), by which the function A1 is completely 
determined. This restriction is satisfied if, for example, b0 is the nearest root to the point b = 0, and the sign 
of A~(b) is opposite to that  of b0. According to Condition 2, inside the gap considered we have p(b) < 0, and 
its ends b = 0 and b = b0 are exactly the two-multiple roots p(b). Under the adopted assumptions, the desired 
solution a0 is given by the quadrature 

a0 ] eb 
x = sign b0b. ~ '  

where b, = a0(O) E (O, b0) is fixed by the choice of the reference system. The function ao(x) is strictly 
monotone, takes on the values from 0 to b0 as x varies from - o r  to +ec,  and has the exponential behavior 

]a0(x)l ~ Cexp( -ao]x l ) ,  Ib0 - ao(x)l ~ Cexp (-flo]x]) 

with indices a0 > 0 and/3o > 0, 

bo 8 

-77 
0 

Condition 2 implies satisfaction of the inequality (3.4); therefore, the approximate solution obtained 
describes a continuous bore spreading over the homogeneous state on the left at infinity with supercrifical speed 
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whose square is equal to c 2 = crgh/(~r-4g bo 2 sx(b0)) with an accuracy of the order O(a3). For conjugate states 
generated by the modes with n >~ 2, the bifurcation curves (A+(a), a) are inside the spectrum of linear waves. 
Here, most probably, the bore should be present coupled with a periodic wave whose profile is determined by 
the generalized eigenfunction (3.2) in the principal term of the asymptotic solution. This situation is similar to 
that occurring in the surface-wave problem with account of the capillarity for Bond numbers smaller than one 
third [13], for which the existence of stationary configurations in the form of solitary waves with oscillating 
tails at infinity is strictly proved. 

5. Examples .  We consider the density profiles (1.1), for which the existence conditions of conjugate 
flows and bore-type waves are satisfied. Most readily, the presence of simple nonzero roots of the Wronskian 
A] can be established for polynomial dependences of the coefficient Po(Y). If the degree po(y) is not greater 
than two, A1 has no roots different from zero. It follows from Theorem 1 that, for a uniform flow with a purely 
exponential or linear density distribution, there can be only close conjugate states with amplitude parameter 
b(g) ---* 0 as a -* 0. The case of higher-order polynomials is more interesting: 

I1 

p0(u) = r k - l u  k (n > 2). 
k = l  

In this case, A1 has the form 

n - - 2  

Ax(b) = -- Irb 4 ~ dk+lb k, (5.1) 
k = 0  

where the vector of the coefficients d = ( d l , . . . ,  dn-1) is linearly expressed via r = ( r l , . . . ,  m - l )  (the omitted 
coefficient r0 does not affect the form of A1) by the formula d = T r  + s with the vector s = (1 ,0 , . . .  ,0) and 
the upper triangular matrix T whose coefficients are strictly positive on the principal diagonal and above it: 

7r 

tics = 3Cks k(s + 1) / yS-} sink+2 y dy (s >1 k). 
k + 2 

0 

Since the transformation T for any polynomial of the form (5.1) is invertible, one can always indicate a 
stratification law (1.1) according to which the function A1 is a determinant of the matrix of system (2.4). 
Let n = 2m + 3 with integer nonnegative m, and all the nonzero roots of the Wronskian form a geometrical 
progression bj = q2rn+2-j (j = 1 , . . . ,  2m+ 1). For this A1 and each pair of the neighboring intervals (b2i-1, b2i) 
and (b2i, b2/+1) (i = 1 , . . .  ,m),  the equality 

b2i b 2 i + l  

f t -4A,(t)  d t=  - f t-4Aa(t)~m(t)dt 
b2i-1 b2i 

with the function ~rn(t) ----- q2m+2(1 -- t)/(1 -- q2m+l) holds. If q is chosen in the limit 0 < q < 1/2, the 
inequalities Al(t)  < 0 and 0 < qam(t) < 1 will be satisfied simultaneously on any of the intervals (b2i, b2i+]) 
Hence, in formula (4.2), one can use any of the roots bj with odd number j = 2i + 1 from m + 1 as b0. This 
example shows that a small perturbation of the linear or exponential stratification can lead to the appearance 
of any already specified number of branches of conjugate states of the first mode with finite amplitude b(a) 
which does not vanish in the limit a ---* 0. Here, each branch is conjugated to the basic uniform flow by its 
stationary bore. The strong sensitivity of nonlinear wave structures to small perturbations of stratification 
was noted in [7, 14]. 

In the particular case m = 0, the determinant Al(b) is the fifth-order polynomial, and the single 
nonzero real root 

16 (4 + 8rl + 3)  

is possible for it. The conjugate flow and the approximate solution in the form of a bore exist for values of 
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the coefficients rl and r2 > 0 for which the inequalities Ib01 < 1 and b0 ~ 0 are satisfied. In this case, 

9 7rr2b2(b ~ _ b)2, p ( b )  = 

so that Eq. (4.1) is the first integral of the modified Korteweg-de Vries equation with cubic nonlinearity, and 
the wave profile in the zero approximation has the form 

b~ n o ( x )  = 

This work was performed within integration project No. 43 "Research of Surface and Internal Gravity 
Waves in a Liquid" and supported by the Program "Leading Scientific Schools," (Grant No. 96-15-96283). 
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